Szasz Analytic Functions and Noncompact Kähler Toric Manifolds

نویسنده

  • RENJIE FENG
چکیده

We show that the classical Szasz analytic function SN (f)(x) is related to the Bergman kernel for the Bargmann-Fock space. Then we generalize this relation to any noncompact toric Kähler manifold, defining the generalized Szasz analytic function ShN (f)(x). Then we will prove the complete asymptotic expansion of ShN (f)(x) and its scaling limit property. As examples, we will compute the generalized Szasz analytic function for the unit ball with the Bergman metric and complex 1,2 and 3-dimensional Kepler manifolds with incomplete Kähler metrics. In addition, three examples about noncompact complete Kähler toric manifolds are discussed, among which are the total space O(−1) → CP, toric Sasaki-manifolds and Reinhardt Domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szasz Analytic Functions and Noncompact Toric Varieties

We relate the classical approximations SN (f)(x) of O.Szasz to the Bergman kernel of the Bargmann-Fock space H(C, e |z| 2 dm(z)). This relation is the analogue for compact toric varieties of the relation between Bernstein polynomials and Bergman kernels on compact toric Kähler varieties of S. Zelditch. The relation is then used to generalize the Szasz analytic functions to any infinite volume t...

متن کامل

Plurisubharmonic Functions and the Structure of Complete Kähler Manifolds with Nonnegative Curvature

In this paper, we study global properties of continuous plurisubharmonic functions on complete noncompact Kähler manifolds with nonnegative bisectional curvature and their applications to the structure of such manifolds. We prove that continuous plurisubharmonic functions with reasonable growth rate on such manifolds can be approximated by smooth plurisubharmonic functions through the heat flow...

متن کامل

Kähler Geometry of Toric Manifolds in Symplectic Coordinates

A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on ...

متن کامل

Multiplier ideal sheaves and the Kähler-Ricci flow on toric Fano manifolds with large symmetry

The purpose of this paper is to calculate the support of the multiplier ideal sheaves derived from the Kähler-Ricci flow on certain toric Fano manifolds with large symmetry. The early idea of this paper has already been in Appendix of [11].

متن کامل

Non-Kähler symplectic manifolds with toric symmetries

Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009